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SUMMARY

In a two-period crossover trial where residual carryover is suspected, it is often advised that first-
period data only be used in an analysis appropriate for a parallel design. However, it has been shown
(Willan and Pater, 1986, Biometrics 42, 593-599) that the crossover analysis is more powerful than
the parallel analysis if the residual carryover, expressed as a proportion of treatment effect, is less than
2 — ~2(1 — p), where p is the intrasubject correlation coefficient. Choosing between the analyses
based on the empirical evaluation of this condition is equivalent to choosing the analysis with the
larger corresponding test statistic. Approximate nominal significance levels are presented that maintain
the desired level when basing the analysis on the maximum test statistic. Furthermore, the power and
precision of the analysis based on the maximum test statistic are compared to the crossover and
parallel analyses.

1. Introduction

Many authors (Cox, 1958; Grizzle, 1965; Hills and Armitage, 1979; Brown, 1980; Kershner
and Federer, 1981; Laska, Meisner, and Kushner, 1983; Patel, 1983; Louis et al., 1984)
discuss the design and analysis of the two-period crossover trial and address the issue of
carryover effects. The general conclusion of this work is that the presence of carryover
effect invalidates the use of the crossover design, and that unless carryover effects are
negligible, a parallel design should be employed, or, if a crossover design has been used,
that the analysis should be based only on the first-period data. Willan and Pater (1986)
take issue with this advice and, using power and precision arguments, conclude that the
amount of carryover effect required to make the parallel design preferable is substantial,
and in most cases, unlikely to exist.

It is proposed in this paper that, under the assumption that no treatment effect implies
no carryover, the test of treatment effect in a two-period crossover clinical trial be based
on either the data from both periods in an analysis appropriate for a crossover design or
on the data from the first period only in an analysis appropriate for a parallel design,
whichever produces the larger test statistic. The model is outlined in Section 2, followed by
a description of the analyses in Section 3. In Section 4 nominal significance levels for
basing the test of treatment effect on the maximum test statistic are introduced. The
maximum test statistic is evaluated with respect to power and precision in Sections 5 and
6, respectively.

* Current mailing address: Department of Population Medicine, Ontario Veterinary College, Uni-
versity of Guelph, Guelph, Ontario, N1G 2W1, Canada.
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2. The Model

Suppose there are two treatment sequences: sequence 1 is treatment 1 during period 1,

followed by treatment 2 during period 2; and sequence 2 is treatment 2 during period 1,

followed by treatment 1 during period 2. Let sequences and periods be indexed by i and k,

respectively. Suppose there are »;, indexed by j, subjects randomized to sequence i. Let Y

be the observed outcome on the jth subject in the ith sequence during period k.
Following Grizzle (1965) and Brown (1980), we assume the following model:

Yie =+ me + ¢ + (K — DN + &5 + e,
where
u = overall mean,;
i = the effect of the kth period, 7, + 7, = 0;
¢, = the effect of the vth treatment, v = i*k(mod 3), ¢, + ¢, =0;
\; = the carryover effect of treatment ; from period 1 to period 2;
;= the effect of the jth subject in the ith sequence;
&;% = the within-subject deviation for the kth period.

We assume u, mx, ¢», and A; to be fixed, and £; and ¢ to be normally distributed
and mutually independent with mean zero and variances ¢ and o2, respectively.
Consequently,

2 2 = kK’
covariance( Yy, Vi) = {Z% o g Z; Ilz’

and
correlation(Yy1, Yin) = o3/(of + 0?) = p.

Finally, let n = n, + ny, ¢ = ¢ — ¢1, and A = A\, — \;. Residual carryover is said to exist
if A#0.

3. The Analyses
The parallel analysis is based on the test statistic
f;)ar = n1n2¢;12)ar/[n(6'§ + &3)]

which when compared to F; ,—»(«) provides a one-sided, level «/2 test or a two-sided, level
o test of treatment effect, where

$par = Y2.l - Yl.l’
Yie = Y Yi/n,
j=1
and
2
6t + o2 = [Z Y (Y — Yi.n)z]/(n - 2).
i=1 j=1

The crossover analysis is based on the test statistic
Jeo = 2”1”24330/(”&3)
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which when compared to F ,—»(c) provides a one-sided, level a/2 test or a two-sided, level
o test of treatment effect, where

beo = [Yi2 — Y11 + Yo, — Ya5]/2

and

. 2 n
262 = {2} Zl Y= Yj —(Yia— Yi-l)]z}/(n -2).
i=1 j=
It should be stressed that if residual carryover persists in the absence of a treatment effect,
feo does not have a noncentral F distribution under the hypothesis, H: ¢ = 0, of no treatment
. effect, and the level of the test based on f, is invalid. However, in many trials residual
carryover results not because a first-period treatment remains active in the second period
but because a treatment effect produces expectations for the second period that differ
between sequence groups. In these trials, and in the following arguments, residual carryover
cannot exist in the absence of a treatment effect, and the hypothesis H implies that A = 0.
Discussion of the relaxation of this implication is found in Section 7.
Willan and Pater (1986) show that f, provides the more powerful test if and only if

Mo <2 — V201 = p). (3.1)

Hence, even in the presence of substantial residual carryover, the analysis of the data from
both periods can provide a more powerful test of treatment effect, Substituting into (3.1)
the estimates

A= (Yzu + Yo — Y12 — Y1),
&pars and PA = &g/(&g + &3)
yields the condition f;, > f.:. Consequently, choosing between f;, and f.,, based on the
empirical evaluation of (3.1), is equivalent to choosing the larger. Therefore, it appears that
basing the test of treatment effect on fn.x = max{f.r, feo} iS a reasonable approach. Since
ot and ¢} + o2 must be estimated, the appropriate critical value for fmax could be calculated

from the multivariate ¢ distribution. In the following section, however, use is made of the
corresponding z-statistics to determine nominal significance levels for fax.

4. Nominal Significance Levels for f..

To determine the nominal significance level, a’, to apply to fmax to maintain the significance
levels at «, the covariance between the test statistics, fp.r and f;,, must be determined. To
ease computation, use was made of the corresponding z-statistics defined as:

Zpar = ‘{’par \/nln2/[n(‘7§ + ‘73)];
Zeo = ¢?co \ 2”1”2/(”‘702)-

The covariance between zp,, and z., is V(1 — p)/2 and therefore (zpar, Zco) has, under H, a
bivariate normal distribution with mean (0, 0) and covariance matrix with ones as diagonal
elements and V(1 — p)/2 as off-diagonal elements. Hence, an approximation for «’, which
is a function of p and hereafter written as a’(p), can be defined as

Pr(zpar = Zo(y) OF Zeo = Zory | H) = a,

and can be determined by numerical integration, where a standard normal deviate
has probability o of exceeding Z,. The significance levels «’(p) were determined
for each combination of o = .05, .025, and .01 and p = 0(.1)1 and are presented in
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Table 1
Significance levels; desired level = .05

Nominal levels Simulated true levels

p for frax "n=20 n=>50 n=100 n =200
.0 .03037 .04968 .04912 .04983 .05022
.1 .02974 ‘
2 .02917 .05080 .05098 .05037 .05065
3 .02864
4 .02814 .05132 .05097 .05154 .05010
.5 .02766
.6 02721 .05091 .05037 .05038 .05061
i .02679
.8 .02637 .05067 .05057 .04895 .05040
9 .02594
1.0 .02532
Table 2
Significance levels; desired level = .025
Nominal levels Simulated true levels
) for frax n=20 n=>50 n=100 n =200
.0 .01469 .02551 .02502 .02496 .02491
.1 .01441
2 .01414 .02559 .02480 .02563 .02488
3 .01390
4 .01368 02504 .02540 .02555 .02496
.5 .01348
.6 .01329 .02533 .02446 .02505 02592
i 01311
.8 .01295 .02550 .02526 .02496 .02481
9 .01279
1.0 .01258
Table 3
Significance levels, desired level = .01
Nominal levels Simulated true levels
p for fimax n=20 n=1>50 n=100 n =200
.0 .00569 .01031 .01021 .01011 .01055
.1 .00558
2 .00549 .01057 .01002 .01033 .00985
3 .00541
4 .00533 .00969 .01057 .01036 .01018
5 .00527
.6 .00521 .01056 .01007 .01016 .01060
i .00515
.8 .00511 .01043 .01048 .01009 .00952
9 .00506
1.0 .00501

" Tables 1, 2, and 3 for the three levels of a, respectively. Two-sided nominal significance
levels are provided by a’(p)/2.

These nominal levels were validated using simulation methods. For each combination

of p =0(.2).8 and n = 20, 50, 100, and 200, 100,000 sets of data were generated. Use was
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made of the IMSL subroutine GGNML. For each set of data s and f.,.x were determined.
The simulated “true” significance level was determined by the proportion of data sets
in which the value of a’(p) exceeded the standard significance level associated with fray,
based on an F distribution with 1 and n — 2 degrees of freedom, and where | p — 5| was
minimized for p in {0, .1, .2, ..., 1}. The true simulated levels are also presented in
Tables 1, 2, and 3. In each case the simulated levels appear sufficiently close to the
desired levels.

5. Power

Numerical integration was used to evaluate the probability
Pr(zpar 2 Zup) O Zeo = Zupy| & = ¢0)

to compare the power of the level .05 test based on fr.x, as described above, to the power
of the tests based on f,.r and fo,. Comparisons were performed for each combination of
p =0(.2).8 and N\/¢ = 0(.2)1, 1.5, 2. The value of ¢, was set so that the power of the level
.05 test based on f,, for \/¢ = 0, was 95%. By doing so the relative efficiencies
are independent of »n, and n was chosen to be 100 arbitrarily. The power comparisons
for p = .4 are demonstrated in Figure 1.

Power /O=O.4
09
07
05
03
o.IF ~~<.co
1 1 L L L 1 ]
O 02 04 06 08 |0 1.5 20
A/0

Figure 1. Power by degree of residual carryover for the parallel analysis (par), the crossover
analysis (co), and the analysis based on fi,. (max).

Over the range A\/¢ < 2 — v2(1 — p), fmax cOmpares favourably with f;, and outperforms
Joar. Over the range A/¢ > 2 — V2(1 — p), fmax cOmpares reasonably well with f,. and clearly

outperforms f;,. In the range around A\/¢ = 2 — v2(1 — p), faax Outperforms both f,. and
Jeo- The relative efficiencies of fn.x as compared to fn.r and f, are displayed in
Table 4. These relative efficiencies illustrate that f,., maintains most of the powers
advantage of f, for small amounts of residual carryover, and yet protects against the
existence of large amounts of residual carryover.
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Table 4
RE., = 100 * POWer . /Power., and REp,, = 100 * POWermax/Power
p
0 2 4 .6 .8
NM¢ RE, RE,. RE, RE, RE, RE. RE, RE, RE, RE,

0 98 124 98 139 97 164 97 214 97 336
2 98 118 97 132 96 155 96 201 95 315
4 100 111 98 123 96 143 94 184 93 285
.6 105 104 101 113 98 130 94 163 91 249
.8 117 98 110 104 104 116 97 141 91 209
1.0 141 94 129 96 117 104 105 121 93 170
1.5 329 90 284 87 235 86 184 87 132 100
2.0 1,347 90 1,149 86 919 82 664 77 399 73

6. Precision

Let dmax equal ¢eo if Jmax = feo and ¢pa,, otherwise. Numerical integration was used to
evaluate the mean squared error of Gumax (MSE,,.,) defined as

E[((bco - ¢0)26(Zco, Zpar) + ((bpar - ¢0) 6(Zpar? Zco)],

where 8(x, y) = 1 if x > y, zero otherwise. Setting (¢7 + ¢?2) equal to one, arbitrarily, yields
MSE., = 2(1 — p)/n + A\?/4 and MSE,,; = 4/n. Mean squared errors were calculated for
the same values of p, n, ¢, and A that were used in Section 5 for the power_ comparisons.
The ratios MSEco/MSEmax and MSE,.,/MSE..x are presented in Table 5. Brmax compares
favourably with q,'>par for all values of p and \/¢. dmax compares favourably with ¢, except
for large values of p and small values of \/¢.

Table 5
RP,, = 100 * MSE,.,/MSE., and RP,,, = 100 * MSE 1,/MSE.,
p
0 2 4 .6 .8
Mo RP,, RPpr RP,, RP,. RP.,, RPp. RP,, RP,. RP,, RP,,

0 88 176 85 213 81 270 75 374 62 619
2 88 160 84 189 78 235 70 314 54 490
4 98 137 90 158 82 190 71 246 53 368
.6 117 119 105 133 92 155 77 194 55 279
.8 148 108 127 117 108 131 87 159 60 220
1.0 190 103 159 108 130 117 101 137 67 182
1.5 354 100 285 101 220 103 158 112 96 135
2.0 591 100 473 100 - 357 101 246 104 138 117

7. Discussion

This paper is presented as an argument in favour of using the maximum test statistic when
analysing data from a two-period crossover trial. Nominal significance levels are derived
that are valid for trials in which no treatment effect implies no residual carryover. In these
trials residual carryover, perhaps best described as a treatment by period interaction, can
exist only in the presence of treatment effect. For example, consider an antiemetic trial
with previously untreated cancer patients receiving at least two consecutive identical courses
of chemotherapy. In general, patients are conditioned by their experience and suffer a
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greater degree of nausea and vomiting in the second period, resulting in a pure period
effect. However, patients receiving the inferior antiemetic in the first period may be
conditioned to a greater extent than the patients receiving the superior antiemetic first. The
net effect is a psychological residual carryover, resulting in a treatment by period interaction,
which will diminish the treatment effect in the second period. An example of such a trial
can be found in Willan and Pater (1986). A treatment by period interaction may also exist
in the presence of a pure period effect if treatment efficacy is a function of disease severity.
Such may be the case if patients are entered during a relatively severe stage of a chronic
disease. A treatment effect, if it exists, may be reduced in the second period as disease
severity diminishes.

Treatment by period interaction can also result in an exaggerated second period treatment
difference. Suppose some of the patients by experiencing a treatment difference can, during
the second period, correctly determine in which period they received the superior treatment.
In these trials such “unblinding” can easily lead to evaluations of treatment effect during
the second period that are exaggerated in favour of the superior arm. These effects can exist
only in the presence of treatment effect and, consequently, the nominal levels reported in
Section 4 are valid.

However, more caution must be exercised if there exists a physical carryover, resulting
because a first-period treatment remains active in the second. In such cases residual
carryover can exist in the absence of treatment effect, causing the treatment with the
smallest carryover effect to outperform the other in the second period, with the possibility
of f.,, and thereby f..«, achieving significance erroneously. This cannot happen, however,
in a placebo-controlled trial or in a trial of a new treatment in which the standard treatment
is known, from previous experience, not to carry over to the second period. These trials
should be analyzed with one-sided tests in which the direction of the possible erroneous
significance is not of interest. In such trials the nominal levels presented in Section 4 are
valid. In other trials in which residual carryover may exist in the absence of treatment
difference, the use of the second-period data, however analysed, could lead to an uncon-
trolled Type I error.

Investigators may use designs that have more than two sequences and/or periods to
provide unbiased estimators of treatment effect in the presence of carryover (Kershner and
Federer, 1981; Laska et al., 1983). Among the two-period designs, the design consisting of
the four sequences (1, 2), (2, 1), (1, 1), and (2, 2) provides the unbiased estimator with the
least variance (Laska et al., 1983). The patients in sequence (i, j) receive treatment i in
period 1 and treatment j in period 2. The variance of the estimator of treatment effect for
this design is greater than the variance of ¢y if p < .5, and although p may sometimes
exceed .5, it would appear to be a gamble at best to use the four-sequence design, rather
than a parallel design, especially when one considers that twice as many observations are
required and that patients will be lost between periods.

A real alternative is provided by the multiperiod designs. For example, the three-period
design with the two sequences (1, 2, 2) and (2, 1, 1) provides an unbiased estimator of
treatment effect with 25% less variance than that for the standard crossover design (1, 2),
(2, 1) with the same number of patients. Whenever feasible, this or other optimal multi-
period designs (see Laska et al., 1983) should be used. However, when only two-period
designs are feasible, or when in spite of feasibility, a two-period design has been used and
if one is confident that no treatment effect implies no carryover effect, as described in the
situations above, the use of the maximum test statistic yields a test with the appropriate
level which in most cases will be more powerful and will provide a more precise estimator
of treatment effect than the parallel design or the design (1, 2), (2, 1), (1, 1), and (2, 2).

In many situations multiperiod designs are infeasible. For antiemetic trials in cancer
chemotherapy, few patients will have three identical courses of chemotherapy. Some will
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be on alternating regimens and many will have dose changes due to toxicities. Still others
will be taken off treatment because of disease progression or death. In other trials it may
be impossible to add even 50% to an already lengthy trial. Problems with multiperiod
designs may occur if patients after completing the second-period treatment have a strong
preference for the treatment they received in a particular period. Such patients may insist
on coming off trial to receive the preferred treatment and physicians may well be ethically
bound to comply with such requests.
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RESUME

Dans un plan d’expérience a deux périodes avec permutation des traitements (cross-over) en présence
d’arriére-effets résiduels, il est souvent recommandé de n’utiliser que les données de la premiére
période en les analysant suivant un plan paralléle. Cependant, on a montré (Willan et Pater,
1986, Biometrics 42, 593-599) que I’analyse du plan avec permutations est plus puissante que
I’analyse du plan paralléle si les arriére-effets représentent une proportion des effets directs inférieure
a2 — +2(1 — p) et si p est le coefficient de correlation intra-sujet. Faire le choix entre les analyses en
se basant sur I’évaluation empirique de cette condition est équivalent a choisir I’analyse avec la plus
grande valeur de statistique de test. Des niveaux de signification nominale sont donnés, qui garantis-
sent le niveau désiré quand on se base sur la statistisque maximum. De plus, la puissance et la
précision de I’analyse basée sur la statistique maximum est comparée aux analyses des plans avec
permutation et des plans paralléles quant a la puissance et a la précision.
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